The full Bayesian significance test for mixture models: results in gene expression clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The full Bayesian significance test for mixture models: results in gene expression clustering.

Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential ...

متن کامل

Gene Expression Clustering with Functional Mixture Models

We propose a functional mixture model for simultaneous clustering and alignment of sets of curves measured on a discrete time grid. The model is specifically tailored to gene expression time course data. Each functional cluster center is a nonlinear combination of solutions of a simple linear differential equation that describes the change of individual mRNA levels when the synthesis and decay ...

متن کامل

Full Bayesian significance test applied to multivariate normal structure models

The Full Bayesian Significance Test (FBST) for precise hypotheses is applied to a Multivariate Normal Structure (MNS) model. In the FBST we compute the evidence against the precise hypothesis. This evidence is the probability of the Highest Relative Surprise Set (HRSS) tangent to the sub-manifold (of the parameter space) that defines the null hypothesis. The MNS model we present appears when te...

متن کامل

Bayesian Mixture Models for Gene Expression and Protein Profiles

We review the use of semi-parametric mixture models for Bayesian inference in high throughput genomic data. We discuss three specific approaches for microarray data, for protein mass spectrometry experiments, and for SAGE data. For the microarray data and the protein mass spectrometry we assume group comparison experiments, i.e., experiments that seek to identify genes and proteins that are dif...

متن کامل

Bayesian infinite mixture model based clustering of gene expression profiles

MOTIVATION The biologic significance of results obtained through cluster analyses of gene expression data generated in microarray experiments have been demonstrated in many studies. In this article we focus on the development of a clustering procedure based on the concept of Bayesian model-averaging and a precise statistical model of expression data. RESULTS We developed a clustering procedur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetics and Molecular Research

سال: 2008

ISSN: 1676-5680

DOI: 10.4238/vol7-3x-meeting06